Homework #7 (10 points) - Show all work on the following problems:

Problem 1 (3 points): Consider a circular ring in the x-y plane with radius R, centered at the origin, carrying a uniform linear charge density λ . Find the first three terms (n =0, 1,2 = monopole, dipole, quadrupole) in the multipole expansion for *V*(*r*, θ). *Hints: Note that in this case the 3-d integral of the volume charge density in Eq. 3.95 is replaced by a 1-d integral over the linear charge density* λ . *Start by expressing the angle* α *in terms of the spherical coordinate angles* θ , ϕ *for the position vector and* θ' , ϕ' *for the source vector.*

Problem 2 (1 point): Find the dipole moment of a spherical shell of radius R with a surface charge $\sigma = k \cos(\theta)$.

Problem 3 (2 points): Show that the electric field of a perfect dipole (Eq. 3.103) can be expressed in the coordinate-free form:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} [3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p}]$$

Problem 4 (2 points): Show that the energy of an ideal dipole \vec{p} in an electric field \vec{E} is given by $U = -\vec{p} \cdot \vec{E}$.

Problem 5 (2 points): Consider a sphere of radius R centered at the origin, with a polarization $\vec{P}(\vec{r}) = k\vec{r}$.

5a (1 point): Find the bound volume and surface charge densities ρ_b and σ_b .

5b (1 point): Find the electric field inside and outside the sphere.